Logo de IMMUNE

Diferencias de machine learning y deep learning

22 febrero 2022

Tal y como apuntaba Mónica Villas, “la Inteligencia Artificial no es el futuro, sino el presente”. La IA es una rama dentro de la investigación y la informática. A través de mecanismos lógico-matemáticos, las máquinas son programadas para satisfacer las necesidades de las personas.

En los últimos tiempos, hemos visto que existen diferentes tipos de Inteligencia Artificial. Hoy ahondaremos en el machine learning y el deep learning.

En este artículo, vamos a ver las diferencias de machine learning y deep learning y en qué consisten estas dos vertientes del aprendizaje en máquinas.

La IA: punto de encuentro entre machine learning y deep learning

La Inteligencia Artificial es una ciencia muy poderosa, que engloba diferentes tipos de tecnología. Sin ir más lejos, podemos observar distintos paradigmas que quedan divididos en 2 grandes agrupaciones: Inteligencia Artificial Robusta e Inteligencia Artificial Aplicada.

  • IA Robusta (Strong AI): Esta idea consistiría en que las máquinas disponen de una inteligencia similar a la capacidad cognitiva del ser humano. 
  • IA aplicada (Weak AI): En este segundo apartado, observamos aquellas máquinas cuyo aprendizaje es guiado a través de algoritmos. En efecto, aquí entrarían el machine learning y el deep learning.

Dicho esto, veamos cuáles son las diferencias de machine learning y deep learning y cuáles son sus definiciones.

¿Qué es machine learning?

En primer lugar, el machine learning o aprendizaje automático hace referencia al uso de algoritmos matemáticos para que las máquinas imiten la forma de aprendizaje de los seres humanos.

A través de estos algoritmos, las máquinas analizan y toman una serie de datos y, por consiguiente, aprenden a tomar decisiones en base a lo aprendido. Es decir, adquieren una serie de patrones, gracias a una programación previa.

¿Qué es deep learning?

Por su parte, el deep learning (aprendizaje profundo) forma parte del propio machine learning. Es muy similar al primero, pero emplea algoritmos distintos:

Mientras que en machine learning se utilizan algoritmos de decisión (árboles de decisión), en deep learning se emplean redes neuronales que imitan a las redes neuronales del cerebro humano.

Si te preguntas cuáles son las diferencias de machine learning y deep learning, podemos decir que este segundo es una vertiente del primero. El deep learning va más allá del machine learning, ya que intenta emular el aprendizaje humano.

De este modo, deep learning es un tipo de aprendizaje más detallado, se encuentra más evolucionado; por lo que es más preciso y su margen de error mucho menor. 

¿Cuándo usar deep learning? ¿Y machine learning?

Ya conoces las diferencias de machine learning y deep learning, ¿pero sabes dónde aplicar este tipo de tecnología?

La inteligencia artificial está presente en nuestro día a día. En el hogar, el trabajo o en cualquier otro aspecto de la vida. De esta forma, veamos algunos ejemplos de inteligencia artificial donde aplicar tanto deep learning como machine learning:

  • Domótica: O la robótica en el hogar. Desde una televisión inteligente, pasando por un espejo, hasta la propia iluminación… Gracias a la IA, tu casa también puede ser smart.
  • Reconocimiento de voz: Asistentes de voz, tales como Siri, Alexa o Google Assistant funcionan con deep learning.
  • Motores de búsqueda: Es el caso de Google que busca la personalización y la adecuación hacia cada usuario.
  • Bots: O los chats del servicio al cliente. Estos buscan un lenguaje natural, respondiendo a las preguntas más frecuentes a los clientes.
  • Predicción de datos: El machine learning emplea diversos modelos predictivos, que se pueden aplicar a distintos campos del conocimiento. En medicina, por ejemplo, para indagar sobre una enfermedad o en economía, a la hora de predecir los precios de productos o servicios.

¿Quieres trabajar en IA? 

¿Has entendido cuáles son las diferencias de machine learning y deep learning? ¿Te parece interesante el campo de la Inteligencia Artificial para dedicarte profesionalmente? Si es así, en IMMUNE disponemos de una oferta formativa pensada para ti.

No dejes de ver nuestro Máster en Data Science, también disponible en versión online; así como este Bootcamp sobre Voice Tech, especializado en ese reconocimiento de voz por parte de los asistentes virtuales. 

¡Únete ya a nuestro instituto tecnológico!

Marta López

Compartir:
Programas relacionados:

Máster Executive Data Science

Ver programa

Máster en Data Science Online

Ver programa

Bootcamp en Data Analytics

Ver programa
Últimos posts:
10 septiembre 2024

Experiencia alumna Maestría Oficial en Data Science y Business Analytics

Lee el artículo
5 agosto 2024

Fundación ONCE e IMMUNE Technology Institute se unen para promover la formación en tecnología en personas con discapacidad

Lee el artículo
27 junio 2024

Experiencia de Sergio y Carolina, alumnos del programa en Ingeniería de Desarrollo de Software

Lee el artículo

Paseo de la Castellana 89, 28046 Madrid

hello@immune.institute
© IMMUNE Technology Institute. Todos los derechos reservados.
Programas
Alumno
Premios y reconocimientospremio educacion en tecnologia e innovacionpremio educacion en tecnologia e innovacionlogo memberlogo premios excelencia educativalogo european excellence education
Logo GIMI instituteInnovation Catalyst
logo european excellence educationPartners educativoslogo asottechAliados internacionaleslogo sica
cross