¿alguna duda?

Diferencias de machine learning y deep learning

22 | 02 | 22

Tal y como apuntaba Mónica Villas, “la Inteligencia Artificial no es el futuro, sino el presente”. La IA es una rama dentro de la investigación y la informática. A través de mecanismos lógico-matemáticos, las máquinas son programadas para satisfacer las necesidades de las personas.

En los últimos tiempos, hemos visto que existen diferentes tipos de Inteligencia Artificial. Hoy ahondaremos en el machine learning y el deep learning.

En este artículo, vamos a ver las diferencias de machine learning y deep learning y en qué consisten estas dos vertientes del aprendizaje en máquinas.

La IA: punto de encuentro entre machine learning y deep learning

La Inteligencia Artificial es una ciencia muy poderosa, que engloba diferentes tipos de tecnología. Sin ir más lejos, podemos observar distintos paradigmas que quedan divididos en 2 grandes agrupaciones: Inteligencia Artificial Robusta e Inteligencia Artificial Aplicada.

  • IA Robusta (Strong AI): Esta idea consistiría en que las máquinas disponen de una inteligencia similar a la capacidad cognitiva del ser humano. 
  • IA aplicada (Weak AI): En este segundo apartado, observamos aquellas máquinas cuyo aprendizaje es guiado a través de algoritmos. En efecto, aquí entrarían el machine learning y el deep learning.

Dicho esto, veamos cuáles son las diferencias de machine learning y deep learning y cuáles son sus definiciones.

¿Qué es machine learning?

En primer lugar, el machine learning o aprendizaje automático hace referencia al uso de algoritmos matemáticos para que las máquinas imiten la forma de aprendizaje de los seres humanos.

A través de estos algoritmos, las máquinas analizan y toman una serie de datos y, por consiguiente, aprenden a tomar decisiones en base a lo aprendido. Es decir, adquieren una serie de patrones, gracias a una programación previa.

¿Qué es deep learning?

Por su parte, el deep learning (aprendizaje profundo) forma parte del propio machine learning. Es muy similar al primero, pero emplea algoritmos distintos:

Mientras que en machine learning se utilizan algoritmos de decisión (árboles de decisión), en deep learning se emplean redes neuronales que imitan a las redes neuronales del cerebro humano.

Si te preguntas cuáles son las diferencias de machine learning y deep learning, podemos decir que este segundo es una vertiente del primero. El deep learning va más allá del machine learning, ya que intenta emular el aprendizaje humano.

De este modo, deep learning es un tipo de aprendizaje más detallado, se encuentra más evolucionado; por lo que es más preciso y su margen de error mucho menor. 

¿Cuándo usar deep learning? ¿Y machine learning?

Ya conoces las diferencias de machine learning y deep learning, ¿pero sabes dónde aplicar este tipo de tecnología?

La inteligencia artificial está presente en nuestro día a día. En el hogar, el trabajo o en cualquier otro aspecto de la vida. De esta forma, veamos algunos ejemplos de inteligencia artificial donde aplicar tanto deep learning como machine learning:

  • Domótica: O la robótica en el hogar. Desde una televisión inteligente, pasando por un espejo, hasta la propia iluminación… Gracias a la IA, tu casa también puede ser smart.
  • Reconocimiento de voz: Asistentes de voz, tales como Siri, Alexa o Google Assistant funcionan con deep learning.
  • Motores de búsqueda: Es el caso de Google que busca la personalización y la adecuación hacia cada usuario.
  • Bots: O los chats del servicio al cliente. Estos buscan un lenguaje natural, respondiendo a las preguntas más frecuentes a los clientes.
  • Predicción de datos: El machine learning emplea diversos modelos predictivos, que se pueden aplicar a distintos campos del conocimiento. En medicina, por ejemplo, para indagar sobre una enfermedad o en economía, a la hora de predecir los precios de productos o servicios.

¿Quieres trabajar en IA? 

¿Has entendido cuáles son las diferencias de machine learning y deep learning? ¿Te parece interesante el campo de la Inteligencia Artificial para dedicarte profesionalmente? Si es así, en IMMUNE disponemos de una oferta formativa pensada para ti.

No dejes de ver nuestro Máster en Data Science, también disponible en versión online; así como este Bootcamp sobre Voice Tech, especializado en ese reconocimiento de voz por parte de los asistentes virtuales. 

¡Únete ya a nuestro instituto tecnológico!

Compartir: 
Compartir: 
Programas relacionados
Próximo evento

Últimos posts

30 de enero de 2023
Fingerprinting: identificando dispositivos a través de puertos y versiones de software

Álvaro Núñez. Security Researcher y docente en el Máster de Cibersegurdad Online en IMMUNE. El pasado martes día 24 de enero realizamos un webinar sobre fingerprinting, una técnica utilizada para identificar y caracterizar sistemas y dispositivos conectados a una red. Esto se basa en recopilar distinta información sobre el sistema o dispositivo y analizar los […]

leer más
27 de enero de 2023
¿Qué es el Design Thinking y cómo repercute en el usuario web?

El design thinking es una metodología utilizada por muchos profesionales del sector del desarrollo web para crear productos digitales fáciles de usar. Combina técnicas creativas de resolución de problemas con investigación y análisis basados en datos para producir soluciones innovadoras que satisfagan las necesidades de los usuarios. En este artículo, exploraremos la historia del design […]

leer más
Premios, reconocimientos y colaboradores
Copyright © IMMUNE Technology Institute - All rights reserved.
crossmenu