Plan de estudios
Este curso te permitirá conocer y comprender los fundamentos de la Ciencia de datos. Aprenderás los pasos asociados a la ejecución y desarrollo de un proyecto de Data science y la importancia de la recogida de datos, dado el impacto que esto tiene en la toma de decisiones. Además, comprenderás los tres pasos imprescindibles en la gestión de datos: la recopilación, el análisis y la interpretación.
Ciclo de vida y calidad del dato
- Definición de ciencia de datos
- Calidad del dato
A lo largo de este tema, nos centraremos en conocer y comprender los fundamentos de la Ciencia de datos, una disciplina sumamente importante en la actualidad.
Comentaremos también los pasos asociados a la ejecución y desarrollo de un proyecto de Data science, roles vinculantes, aplicaciones generales y, por último, abordaremos la temática de calidad del dato y sus derivados.
Preparación y preproceso de datos
- Objetivos y reflexión inicial
- ¿Qué es la recogida de datos?
- Proceso de trabajo en data science
- Data Management
- Gobierno del dato
- Preparación de los datos o Data Wrangling
- Fases del Data Wrangling
- Data Wrangling en Python
- Data cleaning
Los datos son el ingrediente principal del trabajo del data scientist. Sin ellos, no hay análisis, no hay modelos… Sin datos no tenemos visión de nada. Es por ello que es fundamental empezar a construir nuestros conocimientos de este ámbito por esta parte. Vamos a explicarte la importancia de la recogida de datos para que entiendas que el impacto de las decisiones que se toman durante dicho proceso puede ser determinante en el resto de tareas que ejecuta un data scientist en su día a día. Además, vamos a presentar distintos casos de uso para ofrecerte todos los escenarios iniciales que te abrirán la puerta al mundo del análisis y del modelado.