DBS Dublin Business SchoolBachelor's degree in the European Qualifications Framework (EQF) by Dublin Business School

Academic partner

Dublin Business School

Dublin Business School, as a partner of IMMUNE, is an educational institution recognised by Quality & Qualifications Ireland (QQI), the national agency responsible for the quality and recognition of qualifications in Ireland.

Dublin Business SchoolDublin Business School

Study plan

El Computer Entrepreneurship Bachelor está diseñado para que puedas trabajar en áreas de tecnología de empresas, startups, o para que puedas emprender tu propio proyecto tecnológico. Hemos diseñado un plan académico de 3 años que combina asignaturas de Ingeniería de Software con Humanidades. Podrás diseñar, desarrollar y mantener sistemas y aplicaciones software utilizando diferentes métodos y lenguajes de programación. A lo largo de este programa formativo de alto rendimiento desarrollarás tu propio portafolio de proyectos, acumularás horas de código y experiencia práctica, realizarás exámenes de certificación profesional, tendrás prácticas profesionales visitarás empresas y desarrollarás tus habilidades blandas. Además, con la especialización en Inteligencia Artificial & Data Science for Business podrás dirigir proyectos de ciencia de datos y big data, y dominar las técnicas de Inteligencia Artificial para aplicar en las diferentes industrias.

Year 1

On-Boarding: Encuadre Y Soft Skills

Software Development Fundamentals I

Fundamentos del desarrollo de software, permitiendo al alumno empezar a crear programas básicos de escritorio. Comenzamos instalando una distribución de Ubuntu en nuestro portátil y aprendiendo a utilizar Ubuntu a nivel de usuario. Después seguimos el Tutorial oficial de Python para aprender las bases de la programación y finalmente nos enfrentamos al reto de resolver un caso práctico para el que necesitaremos hacer uso de lo que acabamos de aprender.

  1. Creation of basic programmes.
  2. Variables.
  3. Control structures.
  4. Estructuras básicas de memoria.
  5. Conditions.
  6. Functions.
  7. Input/Output.
  8. Estructuras de datos incorporadas.
Software Development Fundamentals II

Conceptos fundamentales de programación. Diseñado para desarrollar habilidades en la aplicación de métodos básicos de lenguajes de programación a problemas abstractos. Los temas incluyen conceptos básicos de programación y Python, conceptos computacionales, ingeniería de software, técnicas algorítmicas, tipos de datos y recursividad. El componente de laboratorio consiste en el diseño, construcción e implementación de software.

Entrepreneurship I

Data Structures

Estructuras de datos más comunes que suele utilizar un desarrollador a la hora de crear software. Nos enfrentaremos a retos prácticos que facilitarán el aprendizaje del funcionamiento de las estructuras de datos más comunes (listas, árboles, grafos y tablas hash). Para ello, primero crearemos nuestra propia implementación para dichos tipos de datos y después integraremos nuestras librerías en un programa que hemos creado para un bloque anterior.

Computer Science I

Matemáticas discretas elementales para ciencias e ingeniería, con especial atención a herramientas matemáticas y técnicas de demostración útiles en informática. Los temas incluyen notación lógica, conjuntos, relaciones, teoría de grafos elementales, máquinas de estados e invariantes, inducción y pruebas por contradicción, recurrencias, notación asintótica, análisis elemental de algoritmos, teoría elemental de números y criptografía, permutaciones y combinaciones, herramientas de conteo y probabilidad discreta.

Algorithms

Algoritmos más comunes que se suelen emplear para resolver problemas de ordenación y búsqueda.

Nos enfrentaremos a retos prácticos que facilitarán el aprendizaje de los algoritmos más utilizados para resolver problemas de 'ordenación de listas' y 'búsqueda de elementos en listas'. Para ello, primero crearemos nuestra propia implementación para dichos algoritmos y después integraremos nuestras librerías en un programa creado para un bloque anterior.

Computer Architecture

Estudio de los componentes informáticos y aborda las técnicas utilizadas por los sistemas actuales para obtener altas prestaciones explotando el paralelismo.

Object-Oriented Programming

Paradigma de la programación orientada a objetos. Nos enfrentaremos a un reto práctico para el que necesitaremos utilizar la programación orientada a objetos para gestionar algunos datos científicos que encajan en este paradigma. No sólo incluirá hacer uso de clases y métodos, sino también un buen uso de los principios clave de la "Programación Orientada a Objetos" (encapsulación, abstracción de datos, polimorfismo y herencia).

Operating Systems

Proyecto de diseño: La tarea principal es el proyecto de diseño (DP). Este proyecto es donde los estudiantes llegan a diseñar su propio sistema, que es el objetivo principal de este curso.

El DP requiere que usted desarrolle un diseño detallado del sistema para resolver un problema del mundo real. Este proyecto se extenderá durante la mayor parte del curso, y se realizará en equipos de cinco estudiantes. Los sistemas del mundo real no se construyen individualmente; siempre es un trabajo en equipo. Parte del PD es aprender a trabajar de forma productiva y eficaz en este entorno. Le daremos herramientas para hacerlo en los tutoriales de escritura.

Optimization

Presenta los principios y técnicas fundamentales del desarrollo de software: cómo escribir software a salvo de errores, fácil de entender y preparado para el cambio. Los temas incluyen especificaciones e invariantes; pruebas, generación de casos de prueba y cobertura; tipos de datos abstractos e independencia de la representación; patrones de diseño para la programación orientada a objetos; programación concurrente, incluido el paso de mensajes y la concurrencia de memoria compartida, y la defensa contra las carreras y el bloqueo; y programación funcional con datos inmutables y funciones de orden superior. Incluye ejercicios de programación semanales y proyectos de programación en grupos más grandes.

Computer Science II

Matemáticas discretas elementales para ciencias e ingeniería, con especial atención a herramientas matemáticas y técnicas de demostración útiles en informática. Los temas incluyen notación lógica, conjuntos, relaciones, teoría de grafos elementales, máquinas de estados e invariantes, inducción y pruebas por contradicción, recurrencias, notación asintótica, análisis elemental de algoritmos, teoría elemental de números y criptografía, permutaciones y combinaciones, herramientas de conteo y probabilidad discreta.

Year 2
Networking

Uso de la red y sus protocolos relacionados. Nos enfrentaremos al desafío de crear una solución cliente-servidor que permita a los usuarios del programa cliente compartir información que se almacenará en un programa-servidor al que todos podrán acceder. Este desafío facilitará el aprendizaje del paradigma cliente-servidor y los procedimientos básicos comúnmente utilizados para comunicar programas a través de la red.

Web Programming I

Bases de la programación web del lado del cliente. Nos enfrentaremos al desafío de crear la parte del lado del cliente de un negocio. Para hacer esto, usaremos HTML para crear la página web, CSS para diseñar y JavaScript para el manejo de eventos. También nos encargaremos de la seguridad web del lado del cliente.

Web Programming II

Bases de la programación web del lado del servidor. Nos enfrentaremos al desafío de completar nuestro negocio implementando su parte del lado del servidor, haciendo uso de un lenguaje de programación del lado del servidor, accediendo a una base de datos y ocupándonos de la seguridad web del lado del servidor. Todo esto se hará siguiendo el patrón de diseño Modelo-Vista-Controlador.

Mobile Programming I

Bases de la programación móvil Android. Nos enfrentaremos al desafío de crear una aplicación para Android haciendo uso de Android Studio. Esto incluirá la gestión de manifiestos de Android, archivos de compilación de Graddle, actividades, fragmentos y widgets gráficos, manejo de eventos, diseño y estilo.

Mobile Programming II

Nos enfrentaremos al reto de crear una App avanzada para Android que sea capaz de actuar como una tienda multimedia para mostrar/reproducir y grabar/capturar audio, imágenes y vídeo. Dicha App accederá a una base de datos local para llevar un registro de la información que maneja, y también podrá conectarse a servidores externos para intercambiar información complementaria.

Software Engineering I

Bases de la ingeniería de software clásica. Los estudiantes se dividen en grupos y cada grupo piensa en un proyecto. Luego, cada grupo toma los requisitos de otro y sigue el ciclo de vida habitual de desarrollo de software para generar todos los documentos correspondientes (requisitos, diseño, implementación, prueba, instalación y mantenimiento). No es necesario escribir código fuente para la parte obligatoria. Opcionalmente, los estudiantes pueden escribir el código fuente correspondiente, verificarlo y luego validarlo con el grupo de clientes.

Agile Methodologies

Últimas tendencias y metodologías relacionadas con la ingeniería de software. Los estudiantes se separan en grupos y cada grupo piensa en un proyecto (que debe ser diferente al proyecto anterior del bloque I de Ingeniería de Software). Luego, cada grupo seguirá las últimas tendencias en ingeniería de software (metodologías Lean y Agile, método Kanban y metodología Scrum) para desarrollar dicho proyecto. Al mismo tiempo, los estudiantes actuarán como clientes potenciales de los proyectos a los que no pertenecen.

Advanced Databases

Nos enfrentaremos al desafío de crear un programa que sea capaz de gestionar la información de los clientes de una empresa. Esto incluirá realizar el modelado de datos correspondiente, definir el modelo Entidad-Relación, crear bases de datos y tablas, e implementar todas las funcionalidades para acceder a dicha BD mediante SQL. Luego, desarrolle un sistema que haga uso de una base de datos sin esquemas para almacenar, administrar y mostrar información heterogénea proveniente de varias fuentes distintas, cada una usando su propio formato de datos. Opcionalmente, los estudiantes pueden optar por una solución distribuida si así lo desean.

Big Data

Fundamentos del Big Data y su ecosistema. Nos enfrentaremos al reto de utilizar Apache Hadoop y Apache Spark para recopilar y mostrar algunos KPI para un hipotético equipo directivo de una empresa. Esta empresa dispondrá de una enorme base de datos de clientes con información proveniente de diversas fuentes heterogéneas (por lo que también necesitaremos realizar acciones ETL).

Entrepreneurship II

Cloud Computing

Computación en la nube. Afrontamos el reto de evaluar y probar cómo trabajar en la nube.

Year 3
Cybersecurity

Importancia de la ciberseguridad y sus principios y técnicas básicos.

Data Science

Proceso de ciencia de datos y sus técnicas.

Artificial Intelligence
  1. Transformadores
  2. Difusores
  3. Redes neuronales y redes convolucionales
  4. OpenAI. Cadena Lang
  5. Vectores
Robotics

Nos enfrentaremos al reto de diseñar y programar (bajo ROS) un robot capaz de seguir una línea en el suelo. Para hacer esto, los estudiantes primero elegirán los sensores y actuadores convenientes y luego implementarán un algoritmo de control de retroalimentación para lograr el objetivo.

Blockchain

Familiarizarse con la tecnología blockchain (protocolo, componentes de una blockchain, operaciones y algoritmos subyacentes. Nos enfrentaremos al desafío de crear nuestra propia criptomoneda (básica) basada en blockchain. Para hacer esto, el estudiante primero deberá comprender las bases de la tecnología blockchain y ser capaz de implementar algoritmos y técnicas básicas con respecto a los bloques y transacciones de blockchain.

Business

Entrepreneurship III

Capstone Project
  • Team building.
  • Choice of topic for final project.
  • Assignment of tutors.
  • Development of the project with an assigned tutor.
  • Project delivery.
Capstone Project Presentation

Presentation of the final project before a panel of experts.

4º Curso - Especialización en IA & Data Science for Business
Statistics applied to data science

This module is a cornerstone, providing the fundamental tools to understand and analyse data accurately and rigorously. In this module, you will understand how statistical techniques and probabilistic concepts are essential elements in data-driven decision making, learning to apply statistical methods to draw meaningful inferences, identify patterns and trends, and make reliable predictions. We will acquire skills to assess the uncertainty and risk associated with data, critical in dynamic business environments.

  • Introduction and Key Mathematical Concepts
  • Fundamentals of Statistics
  • Descriptive Statistics
  • Probability Distributions
  • Linear Algebra
  • Probability
  • Fundamental Concepts
  • Estimation Methods
Advanced AI I: Machine Learning

Once the techniques to start working with Machine Learning are established, this module will allow us to go deeper into more complex algorithms and scenarios, but it will also teach us advanced techniques to optimise our models and face problems when the data does not help us much in its natural state.

  • Advanced Algorithms
  • Support Vector Machines (SVM)
  • Stochastic Gradient Descent
  • Ensemble algorithms: AdaBoost, XGBoost, among others.
  • Model Optimisation
  • Hyperparameter setting
  • Selection of characteristics
  • Regularisation
  • Cross-validation
  • Time Series Analysis
  • Introduction to time series analysis
  • Modelling and trends
  • ARIMA and SARIMA models
  • Networks
  • Fundamental concepts of graphs
  • Learning graph representations
  • Classification and prediction of links
  • Reinforcement Learning
  • Concept of reinforcement learning
  • States, actions and rewards
  • Reinforcement learning algorithms
  • Anomaly Detection and Learning from Unbalanced Data
  • Identifying outliers using statistical methods, clustering and supervised learning
  • Techniques for handling unbalanced data, such as additional data collection, synthetic generation and modification of algorithms
Advanced AI II: Deep Learning

The Deep Learning module is the next level in machine learning, where you'll explore deep neural networks and advanced architectures for tackling complex problems. Discover how these revolutionary techniques have transformed the field, enabling the analysis of more complex data and solving challenges in computer vision, natural language processing and more.

  • Introduction to Deep Learning
  • Convolutional Neural Network (CNN)
  • Recurrent Neural Network (RNN)
  • Natural Language Processing (NLP)
  • Generative Adversarial Networks (GAN)
Generative AI

The module on Generative Artificial Intelligence (Generative AI) provides students with an in-depth understanding of technologies that enable the creation of original content from existing data. The aim is to provide both theoretical knowledge and practical experience to implement generative models in different fields.

  • Generative AI Fundamentals
  • Development and Coding with Generative AI
  • Practical Applications of Generative AI
  • Ethics and Responsibility in Generative AI
  • Generative AI in Digital Transformation
Data Explosion: Distributed Processing in Big Data

Distributed processing has revolutionised the way we manage large volumes of data, and Apache Spark has established itself as one of the most powerful and powerful
main tools in this field. Its ability to process data in a parallel and distributed manner, taking advantage of the power of
computing, has made it essential for professionals seeking to extract value from the vast amount of information generated today.

  • Introduction to Distributed Processing with Spark: Understand the distributed processing paradigm offered by Spark. Its ability to split tasks across multiple cluster nodes allows operations to be performed at high speed and in parallel.
  • Data manipulation with Spark DataFrame: DataFrames in Spark are optimised structures that allow efficient manipulation of tabular data. Here it is important to know:
    • Loading data from multiple sources.
    • Filtering and column selection.
    • Aggregations and transformations.
  • Spark SQL: This Spark module provides an interface that allows the use of SQL queries to manipulate data, facilitating analysis and gaining valuable insights.
  • Data Cleaning and Preparation: Before any analysis, the data must be ready for use:
    • Detection and treatment of null values.
    • Handling of missing data.
    • Data type conversion.
    • Data standardisation.
  • Data Transformation and Enrichment:
    • Date and time operations to correctly handle time data.
    • String manipulation for formatting and transforming textual data.
    • Creation of new columns to provide additional information for analysis.

Workshop: Dashboard in a day

Workshop: Introduction to Databricks and the Spark ecosystem

Workshop: Building Data APIs with FastAPI and Flask

Industry 4.0

The course explores the critical components and underlying technologies of Industry 4.0, a paradigm that integrates advanced digital tools within the industrial context to improve production processes and data-driven decision making. Students will learn about digital transformation and how companies can become Data Driven entities. In addition, the fundamentals of emerging technologies such as Cloud Computing, Big Data, Internet of Things (IoT) and Artificial Intelligence will be introduced, highlighting their importance and application in today's environment.

  • Digital Transformation
  • Data Driven Companies
  • Cloud Fundamentals
  • Big Data Fundamentals
  • IoT Fundamentals
  • Fundamentals of Artificial Intelligence
Journey to Cloud

It provides a detailed understanding of the journey towards cloud adoption, including the technical, strategic and management aspects involved. Students will be guided through fundamental and advanced concepts of cloud computing, effective migration strategies and techniques for optimising and managing cloud infrastructures. A hands-on approach will be encouraged through the design, implementation and evaluation of cloud-based solutions.

  • Cloud Computing Fundamentals
  • Key Components of Cloud Infrastructure
  • Cloud Migration Planning and Strategies
  • Design and Architecture of Cloud Solutions
  • Security and Compliance Management in the Cloud
  • Cloud Operations Management and Optimisation
  • Innovation and Advanced Cloud Services
Data management, innovation and entrepreneurship

This comprehensive module teaches how to strategically manage and use data to foster innovation in a variety of organisational contexts. Through a combination of advanced theory and applied practice, you will study methodologies for effective data management and the implementation of innovative processes that capitalise on emerging opportunities in the technological and business environment.

  • Fundamentals of Data Management
  • Innovation and Creativity in Business
  • Emerging Technologies and Digital Transformation
  • Entrepreneurship and Innovative Startups
  • Innovation Project Management
Data Governance

This module provides a comprehensive overview of data governance, highlighting its importance in the management and protection of data assets within an organisation. Through the analysis of frameworks and regulations, students will learn how to implement effective policies that ensure data quality, security and compliance. The module combines theory with practical case studies to teach students how to design and implement a robust data governance programme that supports the organisation's strategic and operational objectives.

  • Fundamentals of Data Governance
  • Metadata Management and Data Quality
  • Roles and Responsibilities in Data Governance
  • Technologies and Tools for Data Governance
Project Management

This module focuses on project management methodologies used to effectively lead, plan and execute complex projects. Through the study of predictive and agile methodologies, students will learn to adapt to dynamic environments and manage projects that respond to stakeholder needs and business objectives. This module combines academic theory and proven project management techniques, preparing students to face real project management challenges.

  • Project Management Fundamentals
  • Predictive and Agile Project Methodologies
  • Project Planning and Implementation
  • Leadership and Project Team Management
  • Digital Adaptation and Transformation in Project Management
  • Project Management in Complex Environments
Data Ethics

This course explores the fundamental ethical principles applied to data management in the digital age. It will address complex issues such as privacy, confidentiality, autonomy and consent in the context of the growing use of data and analytics technologies. Through a combination of philosophical theory and case studies, students will learn to navigate and apply ethical frameworks in real-world situations related to data management, ensuring responsible and fair decisions in professional settings.

  • Fundamentals of Data Ethics
  • Values in the Data Age
  • Ethics in Digital Democracy
  • Ethics and Responsibility in Generative AI
  • Contemporary Issues in Data Ethics

Workshop: Business

Certification

An asynchronous module in which time will be provided to prepare for and take the certification exams included in the program. IMMUNE, in this case, acts as a facilitator in connecting the certifying entity and the student, easing the process but without having authority over the exam or the grades obtained by the students.

Capstone Project
  • Team building.
  • Choice of topic for final project.
  • Assignment of tutors.
  • Development of the project with an assigned tutor.
  • Project delivery.
Presentation of the Capstone Project

Presentation of the final project before a panel of experts.

Human Sciences

Human Sciences aims to complement your technical training with the development of soft skills. In these spaces, the indivisible aspects of any current professional profile are promoted. In each semester you will have subjects such as:

  1. Public speaking and speeches
  2. Competition and the market
  3. Science fiction
  4. Energy
  5. Ethics
  6. Startup World
  7. The brain
  8. Improvisation
  9. Art
  10. Design thinking
  11. Exponential thinking
  12. Intellectual property
  13. Design
  14. Decision-making
  15. Drawing
  16. Technological perspective
  17. Money management
  18. Geopolitics
  19. The future of tech regulation
  20. Sustainability
  21. Linguistics
  22. Life
  23. How to sell an idea
  24. The matter
  25. Video
  26. The Universe
  27. History
  28. Society
  29. Creativity
  30. How does the world work?
  31. Scientific thinking
  32. Asia and Africa
  33. Customer focus
*The academic program may be subject to changes in line with the changing demand for specific skills in the market. Your employability is our goal.

We rub shoulders with the best

Unai Obieta

Unai Obieta

CIO & CDO | Technology & Digital Transformation Director

Víctor Deutsch

Victor Deutsch

Programming Area Director : CEB Director

Alfredo Barrera Martín

Alfredo Barrera Martín

Cloud Computing Professor

Antonio González

Antonio González

Professor

Hernán Amiune

Hernán Amiune

Machine Learning Consultant

Javier Castellar

Javier Castellar

Professor

Mario La Menza Perello

Mario La Menza Perello

Java Technologies Trainer | Chief Technology Officer

Miguel Ángel

Michelangelo

Creative Manager

Pablo Peñalba Zurita

Pablo Peñalba Zurita

Digital Director and communication strategies

Ricardo Palacios Maya

Ricardo Palacios Maya

Head of Blockchain

Sergio Horacio Borgogno Suárez

Sergio Horacio Borgogno Suárez

Senior Partner & Head of M&A

Academic information

The Computer Entrepreneurship Bachelor (CEB) is an innovative, high-performance 3-year programme that combines computer engineering, data analysis, cybersecurity, human sciences and entrepreneurship to enable you to plan, design and optimise technological projects.

By studying this programme, you will be awarded a qualification from IMMUNE Technology Institute. In addition, by completing an academic year at Dublin Business School (DBS), you will receive an official Irish state qualification NFQ Level 8, equivalent to a bachelor's degree in the European Qualifications Framework (EQF).

Therefore, this Bachelor's Degree in Software Development Engineering promotes professional development in technology from the basics of programming to specialised areas.

Program aims
  • Fundamental knowledge of software engineering: principles, methodologies and life cycles.
  • Define and design innovative software-based tools.
  • Efficient solution of computer problems. Analyse feasibility, computational complexity and apply algorithmic solutions.
  • Information systems. Storage, processing and access.
  • Critical thinking and problem solving. Development of skills such as initiative, autonomy, creativity and communication.
  • Project management under agile methodologies such as SCRUM.
Professional skills

Once you have acquired the required skills and competences, you can choose in which area you want to work or if you prefer to launch your own start-up.

  • Forensic Analyst
  • Big Data Architect
  • Software developer/architect
  • Application Developer
  • Cybersecurity tools developer
  • Game and VR developer
  • Chief Technology Officer
  • Ethical hacking expert
  • Data visualisation expert
  • Data Engineer
  • Physics simulation programmer
  • Artificial intelligence programmer
  • Graphics systems and game engine engineer
Career Readiness

The comprehensive training we deliver to our students thoroughly prepares them for the employment market. Through a personalized syllabus, we help them develop professional skills, establish relationships with companies and sail through recruitment processes.

An alternative training

In all our content, we include a percentage of Human Sciences to connect technology with soft skills.

Learning By Doing Methodology

It focuses on the practical application of knowledge and skills to foster meaningful and lasting learning.

Learning paths

With IDEIA, we design customized learning paths, tailored to your experience and goals. This ensures efficient progress, focused on what you truly need.

Our learning paths guide you from beginner to expert in your area of interest. They are structured and flexible itineraries, tailored to your pace, so you can reach your full personal and professional potential.

Learning paths
Admission test

This questionnaire will allow us to get to know your profile in depth and ensure that this course is perfectly suited to your level of knowledge and expectations, guaranteeing that you get the most out of our program.

Why should you take the test?
  • To assess your prior knowledge.
  • To ensure that this course is the right fit for you.
  • To offer you a personalized and unique learning experience.
How does it work?

The test is completely online, requires no prior preparation, and will take no more than 25 minutes.

Take the test

Testimonials

FAQs
This program is for you if

Do you want to level up?

Do you want to stay in your field or sector, but you want to continue learning and explore new challenges? It's time to give your professional profile a boost and align it with the latest trends in technology.

Are you finishing your degree, and you want an upgrade in technology?

We love your profile, because you dare to dream. And in the professional world, fortune favors the bold. If you are an entrepreneur or freelancer, this program will help take your professional projects to the next level.

Want to change your professional career?

If you want your career to take a new direction and enter the world of tech with a bang, the program will help you specialize and shape your professional profile.

Are you an entrepreneur or freelancer?

This program will put you in the spotlight, as technology is the engine of innovation and the key to staying competitive in a constantly evolving market.

What are the admission requirements?

It is not necessary to demonstrate any prior training for admission, only to go through the admission process consisting of an evaluation of your resume and a personal interview with our admissions team.

Will the tools I need be included in the price of the program?

The tools used throughout the program are licensed for free use, in some cases because we use educational licenses and in others because it is free software.

Is there a careers and employment guidance service?

We have an employability area which, through our Talent Hub program, is responsible for supporting the efforts of our students to enter the employment market. The services we offer include resources to help you search for and prepare for interviews, English tests, resume and/or Linkedin profile guidance, interview and elevator pitch training, and access to our exclusive internship and employment pool.

What are the requirements for my computer?

You will need to have access to a laptop with a camera, microphone and minimum requirements of 8 GB of RAM and an i5 processor.

What is the Capstone Project?

The final project is where everything you have learned throughout the program is applied and consolidated. You will present the project to a panel of professionals from companies in the sector, which represents a unique opportunity for students to demonstrate their knowledge to potential employers and also to network.

Can the course be delivered online?

Yes, the program is delivered online with live classes. As such, you will be in direct contact and under the supervision of the teachers, which will enable you to follow the classes and interact in a flexible and natural way.

What certification or qualification will I receive on completion of the course?

Once you have finished and passed the program, you will receive a diploma issued by IMMUNE Technology Institute in digital format and verifiable using blockchain technology.

Are there grants or scholarships available?

Yes, there are scholarships or study grants as well as financing options depending on students’ circumstances. Check out our scholarship and financing options.

Admissions Process

Our students are characterized by their passion for technology. Our admissions process focuses on who you are, how you think, what you have accomplished, and then sharing your goals.

Our aim is to get to know you better, see what makes you unique and ensure that the IMMUNE educational model adapts to your profile.

1. Application
2. Personal interview
3. Academic committee
4. Enrollment
Request informationStudy planAcademic informationFAQs
IMMUNE Campus

An innovative and vibrant Tech Hub

We are not conventional and our campus even less so.
Designed to replicate an ecosystem of startups and tech companies, we have created a Silicon Valley oasis in the heart of Madrid. Come and check it out.

Visit the campus
+2000m²
Paseo de la Castellana, 89
Co-working spaces
Meeting rooms
Rest areas
Digital classrooms
Auditorium
Recording studio
Subscribe to our newsletter
menuchevron-down